
FTC 2015-2016

Android Based Control System

Agenda

• Control System Overview

• Phone Setup

• Generating the Robot configuration file

• Software Overview

• Autonomous vs Tele-op templates

• Motor/servo control

• Sensor and the Device Interface Module

• Resources

FTC NEW 2015

Control System

Initial Phone Power

Up Process

• Remove SIM Card – disables phone activation

• Initial phone configuration – Enables airplane mode, wifi and

other phone settings

• Enable USB debugging on robot controller phone

• Install USB drivers on computer

• Connect phone to IDE

• Set phone to charge mode on USB connection

Initial Phone Power

Up Process (cont.)

Documentation :

 Watch

 https://www.youtube.com/watch?v=n597U6rcl2Y

 and download document

 https://drive.google.com/file/d/0B7uYv9QIObrEcGJnN19BR1Q5cn

J5NWt4MGt2eUhsZi1Uc0tB/view?usp=sharing

https://www.youtube.com/watch?v=n597U6rcl2Y
https://drive.google.com/file/d/0B7uYv9QIObrEcGJnN19BR1Q5cnJ5NWt4MGt2eUhsZi1Uc0tB/view?usp=sharing
https://drive.google.com/file/d/0B7uYv9QIObrEcGJnN19BR1Q5cnJ5NWt4MGt2eUhsZi1Uc0tB/view?usp=sharing

Setup Wireless

Debugging

Phil Malon – Youtube Video
 https://www.youtube.com/watch?v=0XZ6EH7BV2M

 Download windows batch files to automate

 phone configuration.

 http://bit.ly/1LUuTMc

https://www.youtube.com/watch?v=0XZ6EH7BV2M
http://bit.ly/1LUuTMc

Development Environment

 Setup

• Install latest version of JAVA

• Install latest version of Android Studio or

App Inventor

• Verify you can connect to Robot Controller

phone from development environment.

• Build and install a sample program

Development Environment

 Setup (cont.)

From the FIRST Website download and

read:

– “FTC Training Manual - JAVA Programming

for the Next Gen Controller”

– “Next Gen Platform: Team & Mentor Guide”

– “FTC Training Manual - ZTE Channel

Changing App”

Links to the above are located at:
http://www.usfirst.org/roboticsprograms/ftc/team-resources

http://www.usfirst.org/roboticsprograms/ftc/team-resources
http://www.usfirst.org/roboticsprograms/ftc/team-resources
http://www.usfirst.org/roboticsprograms/ftc/team-resources

Required Google App

Store Applications

• From the Google App Store

– Onto your Driver Station Phone, install the

FTC Driver Station Application

– Onto your Robot Controller Phone, install the

FTC Robot Controller Application

– Onto both phones, install the FTC ZTE

Channel Change Application

Robot Configuration

Setup
• The robot configuration file tells the software which controllers and sensors are

connected to the Robot Controller Application. Each controller and sensor is given a
unique name to identify it in the software (i.e. touchsensor1)

• On your robot controller phone run the Robot Controller Application.

• Go to Settings -> Configure Robot

Click New, the application will search for all attached USB devices and display entries for
each device. You should rename each device (lower case) and use those names in
your code.

Make the device names meaningful, for example if you click on a motor controller entry,
you can rename the controller, and name each motor controller port. For example

 mc_left for left motor controller

 left_front for port 1

 left_back for port 2

Demonstration…

Robot Configuration

Setup (cont.)

Robot H/W Configuration

Setup
• If you change your robot configuration you have

to update the robot hardware mapping, and you
may have to update your code.

• Be careful with USB cables if you plug a
controller into a different port, you may have to
update your robot hardware mapping.

• BEST PRACTICE –
• BUILD A DIAGRAM OF YOUR ROBOT

CONFIGURATION (Use it in your engineering notebook)
• LABEL BOTH ENDS OF YOUR USB CABLES

• LABEL SENSOR CABLES

• LABEL MOTOR AND SERVO PORT CABLES

Development

Environments

• App Inventor - Is a visual design tool that lets
you create Android apps very quickly and
intuitively

• Android Studio - Is a full-fledged commercial
Java software development environment

• Both use a special SDK provided by Qualcomm
with Java classes to access motor, servo, and
sensor data.

App Inventor Screen Shot

App Inventor Installing

Installation is fairly simple:

•Install Google Chrome web browser (free)

•Install Oracle VirtualBox Virtual Machine Software (free)

•Install the pre-configured App Inventor Server virtual

machine image (free) into VirtualBox

•Start the App Inventor Server virtual machine.

Installation manual and the software can be found on

Google Drive:

https://drive.google.com/open?id=0B0...GRHUDE5ZWFORFE

https://drive.google.com/open?id=0B0...GRHUDE5ZWFORFE

App Inventor

Intelitek has a nice interactive tutorial on how to perform the install and use the

application. It is the same information as in the manual, but leads you thought the

process:

 http://ftc.edu.intelitek.com/course/view.php?id=7

•App Inventor Training:

https://drive.google.com/folderview?id=0B0z7bZfPuXgQflZJUXpmczU4VTVUWkp5e

WREUk1EUVdTVWdzRG5BZXh4UGRHUDE5ZWFORFE&usp=drive_web

If you need help:

•FTC Technology Forum:

http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology

•App Inventor Sub-Forum:

http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor

http://ftc.edu.intelitek.com/course/view.php?id=7
https://drive.google.com/folderview?id=0B0z7bZfPuXgQflZJUXpmczU4VTVUWkp5eWREUk1EUVdTVWdzRG5BZXh4UGRHUDE5ZWFORFE&usp=drive_web
https://drive.google.com/folderview?id=0B0z7bZfPuXgQflZJUXpmczU4VTVUWkp5eWREUk1EUVdTVWdzRG5BZXh4UGRHUDE5ZWFORFE&usp=drive_web
http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology
http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology
http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology
http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology
http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology
http://ftcforum.usfirst.org/forumdisplay.php?156-FTC-Technology
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor
http://ftcforum.usfirst.org/forumdisplay.php?160-MIT-App-Inventor

Android Studio Screen Shot

Training Materials

• Intelitek Training for Android Studio and App
Inventor:
http://first.intelitek.com

• Android Studio GitHub:

 https://github.com/ftctechnh/ftc_app

• Android Studio GitHub Training Documents:
https://github.com/ftctechnh/ftc_app/tree/master/
doc/tutorial

http://first.intelitek.com/
https://github.com/ftctechnh/ftc_app
https://github.com/ftctechnh/ftc_app/tree/master/doc/tutorial
https://github.com/ftctechnh/ftc_app/tree/master/doc/tutorial

Programming

In Android Studio the program files that you will need to edit:

• FtcOpModeRegister - Registers opmodes and handles opmodes events

• OpModes (TeleOp) / LinearOpModes (Autonomous)- individual classes
(routines) to run robot

 TEAMS will inherit from the OpMode or LinearOpmode

 class to implement autonomous or teleop programs.

Programming

Similarities

• There are many similarities between the C and Java
programming languages.

• The core program flow is very similar, with sequences of
statements ended with semicolons.

• Many primitive variables are defined similarly, using int,
float, double, etc.

• Many program flow commands are similar or identical,
like if, else if, else, while, do, for, etc.

• There are many tutorials and books for JAVA
development online.

Programming

Differences

• Object Oriented

• Sensor definitions – RobotC Pragma vs

hardware map configuration file

Hardware Map Setup

• In Java, hardware is defined through a hardware map.

• Then, in the OpMode Java code, the program defines class instances
based on the hardware map in the init or start methods, for example:

// defined at top of specific OpMode or LinearOpMode

DcMotor leftDrive, rightDrive;

Servo claw;

TouchSensor touch;

…

// defined in OpMode’s init or start method, or LinearOpMode’s runOpMode method

leftDrive = hardwareMap.dcMotor.get(“motor_1”); // motor_1 set in Configure Robot

claw = hardwareMap.servo.get(“servo_1”); // servo_1 set in Configure Robot

touch = hardwareMap.touchSensor.get(“touch_sensor_1”); // ...

Reading

Joystick / Gamepad Settings

 • The stick settings range from -1 to 1.

• For example:
leftDrive.setPower(gamepad1.left_stick_y); // stick is -1 to 1 !!

if (gamepad1.a) { // uses the names of the buttons rather than button numbers!

 // do stuff here

}

if (gamepad1.dpad_down) { // uses dpad_up, _down, _left, _right

 // do stuff here if bottom top hat is pressed

}

...

• Important change: for the y_sticks, +1 corresponds to pulling the stick
down and -1 corresponds to pushing the stick up!!! This is the
opposite sign polarity from what is done in RobotC and from the
normal cartesian coordinate plane.

• See the full SDK documentation for the syntax of all gamepad settings.

Initializing at the

Start of Operation

 Initial settings are set in the init OpMode method. For example:

float driveSpeed;

@Override

public void init() {

 // setup claw servo using hardware map - not shown here

 …

 claw.setPosition(0.75);

 driveSpeed = 0.5;

 …

}

One key difference is that the init method writes to hardware only once at the
end of the method. Teams that, for example, used the old RobotC
initializeRobot function to spend multiple seconds reading from a gyro
sensor for initial calibration will NOT be able to do the same function by
simply copying that functionality into the init method. (This may change in
a future release of the SDK.)

Main Program Loop

• In RobotC, repeated operation is implemented in a loop structure after the
waitForStart. For example, a simple teleop routine structure might be:

 void main() {

waitForStart();

while (true) {

 getJoystickSettings(joystick1); // Read the joysticks

 motor[motorleft] = joystick1.y1; // Set motor power

 motor[motorright] = joystick1.y2; // Set motor power

 wait1Msec(20);

 }

}

• In Java, the outer structure of the above loop is already provided by the OpMode
class and underlying processing. The loop method is essentially only the inner loop
of the above RobotC example, or the code between the // start doing stuff and the //
end doing stuff comments.

@Override

public void loop() {

 leftDrive.setPower(gamepad1.left_stick_y); // Set motor power

 rightDrive.setPower(gamepad1.right_stick_y); // stick is -1 to 1 !!

}

Setting Motor Power and

Servo Settings

• In RobotC, motor powers and servo settings are
set through arrays, for example:
motor[leftDrive]=100; // from -100 to 100

servo[claw]=128; // from 0 to 255

• In Java, motor powers and servo settings are set
using methods of the corresponding classes, for
example:
leftDrive.setPower(1); // from -1 to 1 !!

claw.setPosition(0.5); // from 0 to 1 !!

LinearOpMode (Automonous)

• In version 1.05 of the FTC SDK, a new class called
LinearOpMode was introduced to allow a coding style
similar to the type of RobotC code shown above. In a
LinearOpMode, we only override one new method:
runOpMode(). We don’t have to worry about the init,
start, loop, or stop methods.

• The LinearOpMode waitForStart(), sleep() and
waitOneHardwareCycle() methods allow for motor and
servo values to be written and sensor and encoder
values to be read before the program continues.// setup
the motors using hardware map calls here, as in a
normal OpMode

LinearOpMode (Automonous)

• In RobotC, a simple autonomous routine’s core code might look like this:

waitForStart();

motor[leftDrive]=100; // drive forward

motor[rightDrive]=100;

wait1Msec(2000); // or wait for a motor encoder to reach a desired setting

motor[leftDrive]=0; // stop

motor[rightDrive]=0;

….

• To mimic the above RobotC code using the LinearOpMode method is shown below.

// setup the motors using hardware map calls here, as in a normal OpMode

……

waitForStart(); // new method only in LinearOpMode!

 // this pauses the program until the start button is pressed

 // on the Driver Station App

leftDrive.setPower(1); // drive forward

rightDrive.setPower(1);

sleep(2000); // or wait for a motor encoder to reach a desired setting

leftDrive.setPower(0); // stop

rightDrive.setPower(0);

waitOneHardwareCycle(); // push the stop out to the motors.

What we didn’t talk about

• MultiThreading

• Motor/Servo Update Rates

• Sensor Update Rates

• Additional information on Start/Init/Loop/Stop
functions

• And a whole lot more …

More information can be found at:

From RobotC to Java for FTC Programmers - William
Gardner –

http://cheer4ftc.blogspot.com/p/2015-technology.html

http://cheer4ftc.blogspot.com/p/2015-technology.html
http://cheer4ftc.blogspot.com/p/2015-technology.html
http://cheer4ftc.blogspot.com/p/2015-technology.html

Getting Sensored

Using existing and custom sensor

with the New

Device Interface Module

NXT Sensor Interface

(old school)

M

M

M

S

X

http://www.ebay.com/itm/Lego-Mindstorms-NXT-2-0-Intelligent-Brick-Used-FULLY-WORKING-LOWEST-PRICE/291476118442?_trksid=p2141725.c100338.m3726&_trkparms=aid=222007&algo=SIC.MBE&ao=1&asc=20141212152715&meid=9c135906335241389fee2baa671a3942&pid=100338&rk=3&rkt=30&mehot=pp&sd=291488207986
https://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NGY1044

NXT Sensor Interface

M

M

M

S

X

http://www.ebay.com/itm/Lego-Mindstorms-NXT-2-0-Intelligent-Brick-Used-FULLY-WORKING-LOWEST-PRICE/291476118442?_trksid=p2141725.c100338.m3726&_trkparms=aid=222007&algo=SIC.MBE&ao=1&asc=20141212152715&meid=9c135906335241389fee2baa671a3942&pid=100338&rk=3&rkt=30&mehot=pp&sd=291488207986
https://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NGY1044
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPWE3Lrs4McCFYrXHgodTC8N1w&url=http://shop.lego.com/en-US/Touch-Sensor-9843&psig=AFQjCNFEvlKgYVlWjmTneJBmE-SQC18J3Q&ust=1441575250575792
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPWE3Lrs4McCFYrXHgodTC8N1w&url=http://shop.lego.com/en-US/Touch-Sensor-9843&psig=AFQjCNFEvlKgYVlWjmTneJBmE-SQC18J3Q&ust=1441575250575792

NXT Sensor Interface

M

M

M

S

X

http://www.ebay.com/itm/Lego-Mindstorms-NXT-2-0-Intelligent-Brick-Used-FULLY-WORKING-LOWEST-PRICE/291476118442?_trksid=p2141725.c100338.m3726&_trkparms=aid=222007&algo=SIC.MBE&ao=1&asc=20141212152715&meid=9c135906335241389fee2baa671a3942&pid=100338&rk=3&rkt=30&mehot=pp&sd=291488207986
https://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NGY1044
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPWE3Lrs4McCFYrXHgodTC8N1w&url=http://shop.lego.com/en-US/Touch-Sensor-9843&psig=AFQjCNFEvlKgYVlWjmTneJBmE-SQC18J3Q&ust=1441575250575792
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPWE3Lrs4McCFYrXHgodTC8N1w&url=http://shop.lego.com/en-US/Touch-Sensor-9843&psig=AFQjCNFEvlKgYVlWjmTneJBmE-SQC18J3Q&ust=1441575250575792

Android Sensor Interfaces

Legacy

Module

Device Interface

Module

(DIM)

Power

Distribution

Module

Android Device

Digital Sensors (8)

Analog Sensors (8)

I2C Sensors (many)

Motor Module Servo Module

IR Seekers

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPWE3Lrs4McCFYrXHgodTC8N1w&url=http://shop.lego.com/en-US/Touch-Sensor-9843&psig=AFQjCNFEvlKgYVlWjmTneJBmE-SQC18J3Q&ust=1441575250575792

Device Interface Module

• This module hosts all independent sensors.

• It allows you to interface to the following

types of sensors:

– Digital (in/out)

– Analog (in/out)

– PWM (out)

– I2C

• This modules opens up a lot of capability for

you to take advantage of!!!!!!

Logic Levels

• The Device Interface module is a 5 volt (V) device. This means it can safely

operation in the range of 0-5V. This is a consideration when selecting items to

interface to the Device Interface Module.

• A logic 0 results when the voltage at the input/output pin is “near” ground (0-

1V). A logic 1 results when the voltage at the input/output pin is “near” 5V (4V-

5V). Anything Voltage applied to a digital pin outside of the 0 or 1 voltage

range is indeterminate (could read a 0 or 1).

• Many sensors and other devices are now being designed to operate at lower

voltages (i.e. 3.3V, 2.0V, etc.). It is still possible to use these lower voltage

devices, but you may need to make allowances in your code or add in some

extra interface electronics or you risk damaging the part.

• Keep in mind that the Device Interface Module can only source 150 milliamps of

current. That is not a lot, so make sure you add up all your loads so you don’t

go over.

Digital (In/Out)
• Digital signals can only represent one of two states at a given moment:

a logic 0 (low, off, ground) OR a logic 1 (high, on, voltage),

• There are 8 digital ports on the modules with each port being

configurable as an input or an output.

• The port and its associated sensor should be aligned in direction (one

is an input, one is an output).

• The software will read a 0 or 1 depending on the voltage level on the

pin (0 or 5V).

• If the port is an input, it must be driven high or low and not be allowed

to “float”. A pull-up resister may need to be added in some cases.

• This is a very simple interface to use if you only need two states.

Digital Sensor Examples:

•Toggle/slide switches

•Limit switches

•Magnetic switches

•Optical switches

•Interrupts signals

•Momentary switch (touch sensor)

Digital Sensors

Switch

Optical Switch Momentary Switch Magnetic Switch Limit Switch Toggle Switch

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAMQjRxqFQoTCJGTlsSk4ccCFUgeHgod8ycEaQ&url=http://www.circuitsarena.com/2015/03/resistor-symbols.html&psig=AFQjCNEuLPXa56wEnpFlI9KVppLAz3dB1w&ust=1441590310436551
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAMQjRxqFQoTCJGTlsSk4ccCFUgeHgod8ycEaQ&url=http://www.circuitsarena.com/2015/03/resistor-symbols.html&psig=AFQjCNEuLPXa56wEnpFlI9KVppLAz3dB1w&ust=1441590310436551

Coding a digital port
public class digitalDemo extends OpMode // Class begins.

{

 DigitalChannel digital; // object variable.

 public void init() // Automatically called once at program start.

 {

 digital = hardwareMap.digitalChannel.get("touch1"); // Create the analog object

 }

 public void start() // Called once at start of teleop.

 { // Nothing to do for now.

 }

 public void loop() // Automatically called repeatedly during teleop

 {

 boolean digVal = digital.getState(); // Read pin into variable.

 telemetry.addData("Digital1:", String.format("%1d", (digVal ? 1 : 0))); // print to screen

 }

 public void stop() // Automatically called at end of teleop.

 { // Nothing to do for now.

 }

} // End of the demo class.

Analog (In)

• Analog signals can have a voltage anywhere in a given range and are

used to convey any value within the range.

• Analog Signal (definition): Is dependent on the sensor which is

creating the analog signal.

• The analog ports on the Device Interface Module operation between 0

and 5V. Thus, any voltage between those two values are acceptable.

• In order for the processor to work with the analog signal, it is first

turned into a 10-bit number (0-1023).The lower the voltage, the lower

the number (0V=0), the higher the voltage, the higher the number

(5V=1024), and anything in between is proportional (i.e. 2.5V=512).

• Since the sensor must generate the voltage, there is rarely a need for

any type of pull-up resister.

Examples:

•Ultrasonic range finders

•IR range finders

•Gyros

•Accelerometers

Code Example:

Analog Sensors

Power

Ultrasonic

Proximity Sensor

IR Proximity

Sensor
IR Proximity

Sensor
Accelerometer

Analog

Signal

Coding an Analog Port
public class AnalogDemo extends OpMode // Class begins.

{

 AnalogInput Analog; // object variable.

 public void init() // Automatically called at program started

 {

 Analog = hardwareMap.analogInput.get(“ods"); // Create the analog object

 }

 public void start() // Automatically called at program started

 { // Nothing to do for now.

 }

 public void loop() // Looping code

 {

 int analVal = Analog.getValue(); // Get analog value (0-1023).

 telemetry.addData(“Analog1:", String.format("%4d", analVal)); // print to screen

 }

 public void stop() // Automatically called at end of teleop.

 { // Nothing to do for now.

 }

} // End of the demo class.

I2C (Bus)

• The I2C interface allows “smart devices” to transfer digital data

(numbers) both to and from the sensor.

• These digital transfers allow for more accurate information to

be exchanged.

• This allows for greater control of the sensor.

• This enhanced communications allows for more sensors to be

put into a single device with each sensor being accessed

separately (gyros, accelerometers, and compasses).

• This is a huge enabler for the use of better, faster, smarter, and

cheaper sensors on future FTC robots.

Examples:

•IR Seekers

•GPS

•Color sensors

•N DoF sensors (gyro/accel/mag)

•Orientation Processors

Code Example:

I2C Sensors

IR Seeker V3
Orientation

Processor
Inertial

Measurement Unit RGB Color Sensor

Power

I2C Bus

Coding an I2C Port

• Add code here.

Analog Output

• The analog output ports can generate specific analog patterns

(sine ways, saw tooth, etc.) and at specified frequencies.

• The analog output ports on the DIM can generate signals of -4V

to 4V.

• There is limited information on this port and limited used for

the functionality it provides, thus it will not be discuss further

at in this presentation.

PWM (out)

• The digital signal generated by a PWM ports is similar to those

generated by the Servo Module. They both cases, it is a

repeating square wave pulse with a specific duty cycle (ratio of

high to low).

• Servo signals must conform to very specific timing restrictions,

where as the PWM ports are not constricted by those same

restrictions.

• The PWM ports output a digital signal of 0 or 5V with a

resolution of 1uS and a frequency of 65 mSec.

• There is limited information on this port and limited used for

the functionality it provides, therefore it will not be discussed

further in this presentation.

The Sensor Sandbox

• The Arduino board is a great way to work with sensors without

tying up your robot hardware.

• Arduinos have many of the same interfaces the Device

Interface module (digital, analog, and i2c).

• Arduinos boards are cheap ($10-$20), software is free, and they

are easy to use.

• This will allow a team to try many different sensors, then use

the ones they like best.

A Few Cautions
With more flexibility comes more responsibility:

•Be aware of the voltage/logic levels when selecting sensors. 5 volts can damage

a 3.3 volt sensor.

•Make sure you configure the direction of any digital pins you use and hook sensor

outputs to digital inputs. Hooking outputs to outputs could damage the module,

sensor, or both!!!

•Be aware of the total power your devices draw from the Device Interface module.

It has a limit of 150mA total.

•Don’t swap around your sensor cables on the Device Interface Module. Your

software will read whatever is connected to the port, even if it is the wrong sensor.

•Don’t plug your sensor cables in backwards!!!

BEWARE AndyMark

Encoder Cable

• AndyMark AM-2965 cables

These are the double ended cables where both ends have the AndyMark

motor connector on them. You can make two motor encoder cables from

each one of these.

• AndyMark AM-2992 cable

BEWARE 4 Pin housing not keyed for FTC motor controllers. Make sure

 BLACK cable is towards bottom of motor controller, upgrade to KEYED

housing

• Digi-Key Conn Housing 609-2396-ND

• Digi-Key Mini-PV Crimp Wire rcpt 609-3620-1-ND

Recommendations

• Buy a few Arduino for doing sensor prototyping.

• Buy some USB-Male A to 90 degree USB mini adapters or

cables. This will save space and your connections.

• Buy APP crimper/connectors. Replace all Tamayo (white)

connectors.

• Sensor pig tail kit available from Modern Robotics Inc (MRI).

APP Connectors

Recommendation to Leagues:

•Buy an Anderson Crimper and medium supply of connectors

(couple hundred). This can be used to support teams that cannot

afford to buy their own.

Recommendation to teams:

•Buy an Anderson Crimper and a small supply of connectors. You

will need to add connectors to motor wires and to make any

custom length cables you wish.

APP Connectors (cont.)

APP parts available from http://www.powerwerx.com

•Crimpers: These crimpers are made specifically for APP

terminals and make the job much easier.

•WP15 (15 Amp) Connectors: Need 1 of these connectors for each

battery charger you decided to convert, and one connector for

each motor. Recommend teams get the set of 25 (WP15-25)

•WP30 (30 amp) Connectors: Need one of these for each battery

you convert, and one for the Power Distribution Module on the

robot. Recommend teams get the set of 25 (WP30-25).

•PP15: Extra 15 amp terminals. Allows for bad crimps and reuse

of the connector bodies. Recommend teams get 30.

•PP30: Extra 30 amp crimp on terminals. Allows for bad crimps

and reuse of the connector bodies. Recommend teams get 20.

http://www.powerwerx.com/
http://www.powerwerx.com/crimping-tools/tricrimp-crimping-powerpole-contacts.html
http://www.powerwerx.com/anderson-powerpoles/powerpole-sets/15-amp-permanently-bonded-red-black-anderson-powerpole-sets.html
http://www.powerwerx.com/anderson-powerpoles/powerpole-sets/30-amp-permanently-bonded-red-black-anderson-powerpole-sets.html
http://www.powerwerx.com/anderson-powerpoles/housings-contacts/1332-15-amp-powerpole-contacts.html
http://www.powerwerx.com/anderson-powerpoles/housings-contacts/1331-30-amp-powerpole-contacts.html

Lunchtime Demos

Resources

•www.modernroboticsinc.com – Android based control system

•www.usfirst.org – National FTC website

•www.flfirst.org – Florida FTC website

•www.hitechnix.com – Legacy Electronics supplies

•www.powerwerx.com – Anderson power poll connectors

•www.tetrix.com – FTC robot hardware

•www.adafruit.com – Sensors and electronics

•www.sparkfun.com – Sensors and electronics

•www.pololu.com - Sensors and electronics

http://www.modernroboticsinc.com/
http://www.usfirst.org/
http://www.flfirst.org/
http://www.hitechnix.com/
http://www.powerwerx.com/
http://www.tetrix.com/
http://www.adafruit.com/
http://www.sparkfun.com/
http://www.pololu.com/

Thanks

• From RobotC to Java for FTC Programmers - William

Gardner - http://cheer4ftc.blogspot.com/p/2015-

technology.html

• Phil Malone (Mentor FTC Team 2818 G-Force)

• Modern robotics

• Adafruit Electronics

• Spark Fun Electronics.

http://cheer4ftc.blogspot.com/p/2015-technology.html
http://cheer4ftc.blogspot.com/p/2015-technology.html
http://cheer4ftc.blogspot.com/p/2015-technology.html

Questions

Ask now

or

ask at lunch

or

ask later on

But please ask!!!

